Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.

Identifieur interne : 000673 ( Main/Exploration ); précédent : 000672; suivant : 000674

Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.

Auteurs : Takeshi Tsukada [Japon] ; Kiyohiko Igarashi ; Shinya Fushinobu ; Masahiro Samejima

Source :

RBID : pubmed:18023045

Descripteurs français

English descriptors

Abstract

The basidiomycete Phanerochaete chrysosporium produces two glycoside hydrolase family 1 intracellular beta-glucosidases, BGL1A and BGL1B, during the course of cellulose degradation. In order to clarify the catalytic difference between two enzymes, in spite of their high similarity in amino acid sequences (65%), five amino acids around the catalytic site of BGL1A were individually mutated to those of BGL1B (V173C, M177L, D229N, H231D, and K253A), and the effects of the mutations on cellobiose hydrolysis were evaluated. When the kinetic parameters (K(m) and k(cat)) were compared at the optimum pH for the wild-type enzyme, the kinetic efficiency was decreased in the cases of D229N, H231D, and K253A, but not V173C or M177L. The pH dependence of cellobiose hydrolysis showed a significantly more acidic pH profile for the D229N mutant, compared with the wild-type enzyme. Since D229 is located between K253 and the putative acid/base catalyst E170, we prepared the double mutant D229N/K253A, and found that its hydrolytic activity at neutral pH was restored to that of the wild-type enzyme. Our results indicate that the interaction between D229 and K253 is critical for the pH dependence and catalytic activity of BGL1A. Biotechnol. Bioeng.

DOI: 10.1002/bit.21717
PubMed: 18023045


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Tsukada, Takeshi" sort="Tsukada, Takeshi" uniqKey="Tsukada T" first="Takeshi" last="Tsukada">Takeshi Tsukada</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18023045</idno>
<idno type="pmid">18023045</idno>
<idno type="doi">10.1002/bit.21717</idno>
<idno type="wicri:Area/Main/Corpus">000717</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000717</idno>
<idno type="wicri:Area/Main/Curation">000717</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000717</idno>
<idno type="wicri:Area/Main/Exploration">000717</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Tsukada, Takeshi" sort="Tsukada, Takeshi" uniqKey="Tsukada T" first="Takeshi" last="Tsukada">Takeshi Tsukada</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Engineering (methods)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>beta-Glucosidase (chemistry)</term>
<term>beta-Glucosidase (genetics)</term>
<term>beta-Glucosidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Ingénierie des protéines (méthodes)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Stabilité enzymatique (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>bêta-Glucosidase (composition chimique)</term>
<term>bêta-Glucosidase (génétique)</term>
<term>bêta-Glucosidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Protein Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Ingénierie des protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Catalysis</term>
<term>Enzyme Activation</term>
<term>Enzyme Stability</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mutagenesis, Site-Directed</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Catalyse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Mutagenèse dirigée</term>
<term>Relation structure-activité</term>
<term>Stabilité enzymatique</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The basidiomycete Phanerochaete chrysosporium produces two glycoside hydrolase family 1 intracellular beta-glucosidases, BGL1A and BGL1B, during the course of cellulose degradation. In order to clarify the catalytic difference between two enzymes, in spite of their high similarity in amino acid sequences (65%), five amino acids around the catalytic site of BGL1A were individually mutated to those of BGL1B (V173C, M177L, D229N, H231D, and K253A), and the effects of the mutations on cellobiose hydrolysis were evaluated. When the kinetic parameters (K(m) and k(cat)) were compared at the optimum pH for the wild-type enzyme, the kinetic efficiency was decreased in the cases of D229N, H231D, and K253A, but not V173C or M177L. The pH dependence of cellobiose hydrolysis showed a significantly more acidic pH profile for the D229N mutant, compared with the wild-type enzyme. Since D229 is located between K253 and the putative acid/base catalyst E170, we prepared the double mutant D229N/K253A, and found that its hydrolytic activity at neutral pH was restored to that of the wild-type enzyme. Our results indicate that the interaction between D229 and K253 is critical for the pH dependence and catalytic activity of BGL1A. Biotechnol. Bioeng.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18023045</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>03</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>99</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2008</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>1295-302</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The basidiomycete Phanerochaete chrysosporium produces two glycoside hydrolase family 1 intracellular beta-glucosidases, BGL1A and BGL1B, during the course of cellulose degradation. In order to clarify the catalytic difference between two enzymes, in spite of their high similarity in amino acid sequences (65%), five amino acids around the catalytic site of BGL1A were individually mutated to those of BGL1B (V173C, M177L, D229N, H231D, and K253A), and the effects of the mutations on cellobiose hydrolysis were evaluated. When the kinetic parameters (K(m) and k(cat)) were compared at the optimum pH for the wild-type enzyme, the kinetic efficiency was decreased in the cases of D229N, H231D, and K253A, but not V173C or M177L. The pH dependence of cellobiose hydrolysis showed a significantly more acidic pH profile for the D229N mutant, compared with the wild-type enzyme. Since D229 is located between K253 and the putative acid/base catalyst E170, we prepared the double mutant D229N/K253A, and found that its hydrolytic activity at neutral pH was restored to that of the wild-type enzyme. Our results indicate that the interaction between D229 and K253 is critical for the pH dependence and catalytic activity of BGL1A. Biotechnol. Bioeng.</AbstractText>
<CopyrightInformation>Copyright 2007 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsukada</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>Kiyohiko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fushinobu</LastName>
<ForeName>Shinya</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samejima</LastName>
<ForeName>Masahiro</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.2.1.21</RegistryNumber>
<NameOfSubstance UI="D001617">beta-Glucosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001617" MajorTopicYN="N">beta-Glucosidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18023045</ArticleId>
<ArticleId IdType="doi">10.1002/bit.21717</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Tsukada, Takeshi" sort="Tsukada, Takeshi" uniqKey="Tsukada T" first="Takeshi" last="Tsukada">Takeshi Tsukada</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000673 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000673 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18023045
   |texte=   Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18023045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020